

Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

Dennis Papadopoulos^{1,2}, Bengt Eliasson¹, X. Shao¹, J. Labenski² and C.L.Chang² University of Maryland¹ BAE Systems² Invited Presentation Session SM 34A AGU 2011 Fall Meeting

December 7, 2011 San Francisco

SUPPORT: MURI/ONR AND BRIOCHE/DARPA

M-I SAW coupling

The Inner Proton Belt – Long lifetimes

No wave activity at SAW and EMIC branches

South Atlantic Anomaly

Injecting ELF Waves from the Ionosphere into the Inner Belt

Major New Research Opportunity

Required ELF Frequencies for protons $\omega \approx k_z V_p$ $\omega = k_z V_A$ $\omega(E, \alpha) \approx \frac{\Omega}{\cos \alpha} \sqrt{\frac{MV_A^2}{2E}}$

Required ELF Frequencies for MeV electrons – EMIC waves

Proton Energy	Resonance Frequencies
30 MeV	6-16 Hz
50 MeV	5-15 Hz
100 MeV	3.5-9.5Hz

Techniques for Injecting 1-40 Hz Waves

1. Rotating Magnetic Fields (RMF) – PoP using UCLA/LAPD Chamber

Karavaev et al. PoP, 2010; Giglioti et al. PoP, 2009

Orbiting satellite carrying superconducting or permanent magnet Controlling its spin results in injection of SAW in the RB

Magneto-synchronous orbit

RMF Injection from Ground

RMF Satellite Injection

Techniques for Injecting 1-40 Hz Waves

2. Ionospheric Current Drive (ICD) Papadopoulos et al. GRL 2011 a,b I-M SAW Coupling – Requires Ionospheric Heater – Available at Arecibo

Step 1: F-Region HF Heating -gradp $\Delta J = \frac{B \times \nabla \delta p}{B^2} \exp(i\omega t)$ MS Wave Step 2: E field of MS wave drives Hall current in E-region resulting in secondary antenna resembling PEJ

F- region cooling response does not allow frequencies higher than 60-70 Hz

Injects SAW upwards and ELF in the Earth-Ionosphere Waveguide

Concept reverses M-I SAW coupling to I-M SAW coupling

ICD Modeling and PoP HAARP Experiments

Secondary Antenna Current and Ground Field

Ϳ_θ

Proof of Concept ICD Experiment – Conducted under DARPA/BRIOCHE

Chang-Lebinsky-Milikh-Papadopoulos

N-S B Field (Gakona NI BF4) - UTC 2010-10-30 06:00:00 to 2010-10-30 06:19:30

Low ELF Observed by Demeter Satellite

2010-11-06, 06:15:00-06:34:30 ELF 11 Hz modulation (O-MZ)

Frequency [Hz]

Frequency [Hz]

Msonic Wave Injection

Implications of ICD to RB and RBR – Potential Arecibo/RBSP Tests

RBSP

VOLOME 37, NUMBER 5

ICD provides explanation for puzzling Arecibo experiment

Ganguly-Gordon-Papadopoulos PRL 1985

FIG. 1. Spectre of the received signal in the 0-10-Hz band (14 February 1985). Receiver was located at Mnna Island. Data cover the period 16:30-18:30 AST. The HF transmitters were operated at 5.1 MHz and with a difference frequency Δf of 5 Hz during 16:30-17:30 AST, which was changed to 3 Hz during 17:30-18:00 AST and changed back to 5.0 Hz during 18:00-18:30 AST. The magnitude of the 5.0-Hz signal is about 160 $\mu\gamma$ Hz⁻¹⁰ and that of the 3.0-Hz signal is about 340 $\mu\gamma$ Hz⁻¹⁷.

COMPLEMENTARY SLIDES

Inner Proton Belt

Typical inner belt proton lifetimes: 10 MeV – decades 50 MeV – century

Proton Lifetimes in the Inner Belt are Long

Typical inner belt proton lifetimes:

10 MeV – decades 100 MeV – centuries 1000 MeV – millennia

South Atlantic Anomaly

Over the south Atlantic, the inner proton belt is closest to the surface Protons in this region are the largest radiation source for LEO satellites

Frequency Selection for Protons

Frequency Selection for Electrons EMIC

Outer Belts

Summers et al., 1998, 2000, 2003

For midlatitude MeV electrons

Frequency Selection for Protons

ENERGETIC ELECTRON WP INTERACTIONS DUE TO EMIC WAVES

As a result $1/k_z \rightarrow |\Omega_e|/\gamma v_z$ before reaching resonance $(1/k_z \rightarrow 0)$

Outer Belts

Summers et al., 1998, 2000, 2003

HELIUM BRANCH

